• A personal note on IGBP and the social sciences

    Humans are an integral component of the Earth system as conceptualised by IGBP. João Morais recalls key milestones in IGBP’s engagement with the social sciences and offers some words of advice for Future Earth.
  • IGBP and Earth observation:
    a co-evolution

    The iconic images of Earth beamed back by the earliest spacecraft helped to galvanise interest in our planet’s environment. The subsequent evolution and development of satellites for Earth observation has been intricately linked with that of IGBP and other global-change research programmes, write Jack Kaye and Cat Downy .

Ecosystem photosynthesis inferred from carbonyl sulfide flux measurements

Nature Geoscience (2013)

Asaf D, Rotenberg E, Tatarinov T, Dicken U, Montzka S A and Yakir D

DOI: 10.1038/NGEO1730

Vol 6, pp 186-190


Limited understanding of carbon dioxide sinks and sources on land is often linked to the inability to distinguish between the carbon dioxide taken up by photosynthesis, and that released by respiration(1,2). Carbonyl sulphide, a sulphur-containing analogue of carbon dioxide, is also taken up by plants, and could potentially serve as a powerful proxy for photosynthetic carbon dioxide uptake, which cannot be directly measured above the leaf scale. Indeed, variations in atmospheric concentrations of carbonyl sulphide are closely related to those of carbon dioxide at regional, local and leaf scales(3, 4,5,6,7,8,9). Here, we use eddy covariance and laser spectroscopy(10) to estimate the net exchange of carbon dioxide and carbonyl sulphide across three pine forests, a cotton field and a wheat field in Israel. We estimate gross primary productivity—a measure of ecosystem photosynthesis—directly from the carbonyl sulphide fluxes, and indirectly from carbon dioxide fluxes. The two estimates agree within an error of ±15%. The ratio of carbonyl sulphide to carbon dioxide flux at the ecosystem scale was consistent with the variability in mixing ratios observed on seasonal timescales in the background atmosphere. We suggest that atmospheric measurements of carbonyl sulphide flux could provide an independent constraint on estimates of gross primary productivity, key to projecting the response of the land biosphere to climate change.

Share this page
Tell a friend (opens in new window)
Follow us

Please note!

IGBP closed at the end of 2015. This website is no longer updated.

No events available

  • Global Change Magazine No. 84

    This final issue of the magazine takes stock of IGBP’s scientific and institutional accomplishments as well as its contributions to policy and capacity building. It features interviews of several past...

  • Global Change Magazine No. 83

    This issue features a special section on carbon. You can read about peak greenhouse-gas emissions in China, the mitigation of black carbon emissions and the effect of the 2010-2011 La Niña event on gl...