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Global urban land-use trends and climate impacts
Karen C Seto1 and J Marshall Shepherd2

In 2008, the global urban population exceeded the nonrural

population for the first time in history, and it is estimated that by

2050, 70% of the world population will live in urban areas, with

more than half of them concentrated in Asia. Although there are

projections of future urban population growth, there is

significantly less information about how these changes in

demographics correspond with changes in urban extent. Urban

land-use and land-cover changes have considerable impacts

on climate. It has been well established that the urban heat

island effect is more significant during the night than day and

that it is affected by the shape, size, and geometry of buildings

as well as the differences in urban and rural gradients. Recent

research points to mounting evidence that urbanization also

affects cycling of water, carbon, aerosols, and nitrogen in the

climate system. This review highlights advances in the

understanding of urban land-use trends and associated climate

impacts, concentrating on peer-reviewed papers that have

been published over the last two years.
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Global urban land-use trends
Urbanization and climate change are two defining

environmental phenomena of the 21st century, and these

two processes are increasingly interconnected. This paper

reviews recent developments in our understanding

of global patterns of urban land-use and the effects of

urbanization on climate. Currently, more than half of the

world’s population lives in urban areas, and it is expected

that 70% will live in urban areas by 2050 [1]. Most of the

urban demographic transformation in the coming decades

will occur in Asia and Africa, and by 2050, one-third of all

urban dwellers will be concentrated in Asia [2]. Nearly

one-quarter of the world’s population lives within 100 km

of the coast [3] and 13% of the world’s urban population

lives less than 10 m above sea level [4��]. Missing from

these forecasts of urban population growth are parallel

and spatially explicit estimates of the rates, magnitudes,

and shapes of urban land-use. Yet, time series information

on land-use and land-cover has been specifically ident-

ified as data needed in order to understand the inter-

actions between climate, humans, and environmental

systems [5].

Remote sensing data have been widely used to measure

urban extents, with a majority of studies using one to

three satellite images to provide single snapshots of urban

land-use or to monitor urban land-use change between

two or three time points [6,7]. The Landsat satellite

record now spans more than three decades and opens

up new opportunities for the use of multiple satellite

observations to generate high temporal frequency infor-

mation about urban land-use [9,10]. New analytical tech-

niques also are developed to extract urban characteristics

from satellite data such as informal settlements [8,9],

surface energy balance [10,11], and buildings and other

urban geometric features [12,13].

How urban areas develop — whether expansive or com-

pact, with multifamily residential complexes or single

family homes, automobile dependent or enabling

multiple forms of transportation, with mixed-use or

single-use zoning — affects transportation choices and

travel behavior [14,15], and determines infrastructure

needs [16] and energy consumption [17]. Once in place,

urban infrastructure is difficult to reverse, and their long-

evity leads to a path dependency with regard to energy

use and may limit adaptation strategies to climate change

and associated effects such as heat waves. Where urban

areas develop — whether on the coast, in agricultural

areas, in forested regions, or near existing urban

centers — determine their vulnerability to climate

change impacts such as sea level rise and storm surges,

the need to expand agricultural production into other areas,

and the resources required to provide urban services such

as water, energy, and transportation infrastructure. In short,

environmental impacts of urban form are indisputable.

Most of our understanding about global urban land-use

comes from case studies on individual cities or regions

[18–20]. Although coarse scale monitoring provides global

and national estimates of urban areas, accuracy assess-

ments of global urban maps indicate that there is a high

degree of variance among estimates, suggesting caution in

their use [21,22�]. From these individual case studies is

emerging a picture of varied rates of urban land-use

change around the world. Rates of urban land-use change
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are highest in Asia and some areas in South America and

are strongly correlated with patterns of economic devel-

opment [20,23]. When economic development is driven

by shifts in the economy from agriculture to manufactur-

ing, it leads to more expansive urban land-use change

than the economic transition from manufacturing to ser-

vices [24]. In many developing countries and export-

oriented regions where economic growth is high, urban

land-use change is growing faster than the rate of urban

population growth. One study of 120 cities around the

world shows that urban populations have been growing at

1.7% annually over the last two decades, but urban land-

use change is growing faster, at more than 3.3% annually

[23]. Worldwide, urban land-use change is driving land-

scape fragmentation [25–27], the loss of agricultural land

[28,29], and threatening biodiversity [30��,31]. It is esti-

mated that an area with the size of California will be

converted to urban areas by 2030 [23].

Land change science, including urban land-use change,

is emerging as a fundamental component of global

environmental change [32]. Given the increasing import-

ance of urban areas in driving and being impacted by

global environmental change, there is urgent need to

understand how urban areas evolve, and how and where

they may develop in the future. There is a rapidly

growing literature on modeling urban spatial dynamics

and forecasting urban growth [36–39]. The general con-

sensus is that urban land-use dynamics can be best

understood as complex systems [33] with emergent

properties such as obeying power laws [34,35]. In order

to evaluate the efficacy of urban planning to direct urban

development or conservation policies to save protected

areas or limit urban expansion, it will be critical to

develop conceptual frameworks and modeling

approaches that can characterize the underlying pro-

cesses that drive urban land-use dynamics [36], including

the effect of roads and transportation corridors on urban-

ization patterns [37,38]. Furthermore, these methods will

need to be applicable to the developing world where

most of the urban growth will occur in the coming

decades and where there are often limited data avail-

ability and accuracy [39].

Currently, our understanding of both current and future

patterns of global urban land-use is poor and fragmented.

This is largely due to an uneven global distribution of

urban land-use studies. A majority of studies focus on

urbanizing regions in China, India, Europe, and the

United States, but there are comparatively few studies

of urban land-use change in South America, Africa, and

the rest of the world. The lack of understanding about

past urban land-use processes limits our ability to identify

regions at risk for urban development. However, these

knowledge gaps also open myriad opportunities to take

advantage of existing satellite data sets to expand our

understanding of global urban land-use trends.

Climate impacts of urbanization
Concomitant with the rising interest in characterizing and

forecasting urban land-use change is an increased un-

derstanding of the relationship between urbanization and

climate. Though the effects of anthropogenic greenhouse

gases have been the focus of prevailing climate change

inquiry, the Fourth Assessment Report of the Intergo-

vernmental Panel on Climate Change (IPCC) noted the

emerging interest in understanding the role of urban land-

use on the climate system [40]. The built environment

characterized by urbanization is a significant forcing func-

tion on the weather-climate system because it is a heat

source, a poor storage system for water, an impediment to

atmospheric motion, and a source of aerosols (e.g. pollu-

tants) (Figure 1) [41�].

Such attributes significantly alter surface energy budgets,

the hydrological cycle, and biogeochemical cycles related

to carbon and nitrogen. Further, it is increasingly clear

that the impact of urban land-use extends from local to

global scales [42] (Table 1).

The most well-studied and familiar manifestation of

urban climate modification is the urban heat island

(UHI) [43,44]. Recent research shows that it is spatially

correlated with regional land-use and land-use change. A

landscape during the early phases of urban development

is a patchwork of multiple land-covers, with bare land,

vegetated areas, agricultural plots, and built-up areas in

close proximity with one another. In non-desert environ-

ments, urbanization increases the contiguous urban

extent and reduces the vegetated surfaces, and the spatial

pattern of the urban heat island correspondingly becomes

less scattered and more intense [45–47]. In desert cities,

the urbanization process often increases vegetation. The

role of the urban heat island on regional and global

climate has been the subject of numerous investigations

[48–53]. However, the role of urban land-use on climate

extends well beyond the UHI.

Human activities associated with urban land-use (e.g.

transportation, energy, and industrial processes) produce

a clearly discernible association with ‘urban’ aerosols or

pollution, and have been associated with elevated green-

house gas emissions. Carbon dioxide concentrations in

urban centers are significantly higher than in nonurban,

rural areas [54], but per capita greenhouse gas emissions

for urban dwellers may be lower than for country averages

[55]. Efforts to inventory greenhouse gas emissions in

urban areas are made more difficult by a lack of data to

attribute both direct and indirect emissions to urbaniz-

ation [56]. Back of the envelop calculations suggest that if

greenhouse gas emissions were attributed to the producer

rather than the consumer, cities emit between 30 and 40%

of all greenhouse gas emissions, a figure that is signifi-

cantly lower than the widely cited statistic that cities

generate 75–80% of all greenhouse gas emissions [57].
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Aerosols affect climate, directly and indirectly, through

radiative forcing. There are various types of aerosols over

urban regions but the primary types are sulfates, nitrates,

ammonium, organics, crustal rock particulate matter, sea

salt hydrogen ions, and water [58]. Aerosols affect not only

the local urban microclimate, ecosystem, and society but

also the global climate. The ‘direct’ radiative effect of

aerosols is to scatter, reflect, or absorb solar radiation.

Most aerosols, including sulfates found in urban environ-

ments, promote a cooling effect in the radiative budget;

Global urban land-use trends and climate impacts Seto and Shepherd 91

Table 1

Various pathways for urbanization to impact the climate system (see text for references)

Urban land-cover Urban aerosols Anthropogenic greenhouse

gas (GHG) emissions

Urban heat island and mean

surface temperature record

Surface energy budget Insolation, direct aerosol effect Radiative warming and

feedbacks

Wind flow and turbulence Surface energy budget, urban

morphological parameters, mechanical

turbulence, bifurcated flow

Direct and indirect aerosol effects

and related dynamic/

thermodynamic response

Radiative warming and

feedbacks

Clouds and precipitation Surface energy budget, UHI-

destabilization, UHI meso-circulations,

UHI-induced convergence zones

Aerosol indirect effects on

cloud-precipitation microphysics,

insolation effects

Radiative warming and

feedbacks

Land surface hydrology Surface runoff, reduced infiltration, less

evapotranspiration

Aerosol indirect effects on

cloud-microphysical and

precipitation processes

Radiative warming and

feedbacks

Carbon cycle Replacement of high net primary

productivity (NPP) land with impervious

surface

Black carbon aerosols Radiative warming and

feedbacks, fluxes of carbon

dioxide

Nitrogen cycle Combustion, fertilization, sewage release,

and runoff

Acid rain, nitrates Radiative warming and

feedback, NOx emissions

Figure 1

Physical interactions in the urban microclimate (from Hidalgo et al. [41]).
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however, carbon-based aerosols absorb solar radiation and

may warm the atmosphere and surface. Such warming can

affect the atmospheric stability profile and thereby alter

cloud and precipitation morphology.

Climate–aerosol interactions are quite complex and

beyond the scope of this discussion, but it is clear from

the emerging literature that the negative and positive

effects must be placed in the context of scale: local,

regional, and global. Emerging challenges will also in-

clude proper budgeting of aerosol types and concen-

trations at such scales and detangling the resulting

feedbacks and responses across scales. For example,

aerosols augment UHI-effects on temperature by absorb-

ing, re-emitting, and scattering solar and terrestrial radi-

ation. Anthropogenic aerosols also act as condensation

nuclei or ‘seeds’ for cloud-microphysical processes [59].

This so-called ‘indirect effect’ of aerosols further perturbs

the radiation budget, cloud distribution, and precipitation

variability. Urban land-use also alters local and regional

atmosphere dynamic and stability conditions to support

thermally directed circulations similar to sea breezes.

Historical and current literature has persistently shown

that UHI-destabilization, urban surface roughness, and

pollution can independently or synergistically initiate,

modify, or enhance precipitation cloud systems [60,61].

There is renewed debate on the effects of urbanization on

precipitation variability [62]. A growing body of literature

suggests that urban land-use can create an increase in

regional precipitation variability and intensity [60,63,64],

known as the ‘urban rainfall effect’ [65�] (Figure 2). In

Europe [66] and South China [67], there have been a few

cases with observed decreases in winter rainfall compared

to preurbanization periods. Further, urban land-use accel-

erates hydrologic response through surface runoff varia-

bility. While physical mechanisms continue to be

investigated, it is important to properly characterize the

role of urbanization on water cycle processes, as they are

critical in diagnosing and predicting climate changes.

Two additional cycles important to climate are also sen-

sitive to urban land-use changes. Net primary pro-

ductivity (NPP), a measure of carbon, has recently

been studied and quantified in relation to carbon balance

and food production [68]. Urbanization takes place on

Earth’s most fertile lands and has a disproportionately

large net negative effect on regional to continental scale

92 Inaugural issues

Figure 2

Model simulations from Shem and Shepherd [65�] illustrating how Atlanta, Georgia’s urban land-cover induces low-level convergence (red and blue

colors) and where urban-enhanced rainfall eventually occurred (rectangle).
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NPP. Research suggests that NPP losses from urbaniz-

ation alone are roughly equivalent to the caloric require-

ment of about 6% of the United States population

annually [68]. Human activities in urban areas also sig-

nificantly perturb land-atmosphere fluxes of carbon diox-

ide [69]. Global carbon budget analyses are central tenets

of climate change science, and it is evident that they must

properly account for the impacts of urban environments.

Urban land-use is also strongly correlated with high levels

of combustion, fertilization, and sewage release. These

processes release various forms of nitrogen compounds

into the climate system and ecosystems [70]. Human-

generated nitrous oxide releases contribute to global

warming, ozone layer depletion, photochemical smog

formation, and acid rain, while excess nitrogen destroys

ecosystems through acidification of water bodies, tree

deaths, and biodiversity reductions. Changes in major

biogeochemical cycles, like the nitrogen cycle, are

inter-related to climate processes.

Clearly, the footprint of urban land-use is apparent in

Earth’s climate system and must be accounted for in

emerging climate modeling systems [71]. Huge uncer-

tainties remain about the rate and magnitude of urban

expansion: which ecosystems are most at risk to urban

development, what are the emerging patterns of urban

land-use, and how will extensive and expansive urban

land-use change drive affect regional and global climate?

As area estimates and mapping of global urban land-use

improve and converge with ever-increasing spatial resol-

ution of climate models (i.e. as grid cells cover smaller

surface areas), the aforementioned urban forcing on

atmospheric thermodynamics, dynamics, energy balance,

microphysics, and composition must be explicitly

represented. Only then will the climate science com-

munity make the necessary progress to understand the

integrated effects of urban land-use, urban land-use

change, and associated aerosol processes on climate.
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